Analyzing the Role of "Smart" Start Points in Coarse Search-Greedy Search
نویسندگان
چکیده
An inherent assumption in many search techniques is that information from existing solution(s) can help guide the search process to find better solutions. For example, memetic algorithms can use information from existing local optima to effectively explore a globally convex search space, and genetic algorithms assemble new solution candidates from existing solution components. At the extreme, the quality of a random solution may even be used to identify promising areas of the search space to explore. The best of several random solutions can be viewed as a “smart” start point for a greedy search technique, and the benefits of “smart” start points are demonstrated on several benchmark and real-world optimization problems. Although limitations exist, “smart” start points are most likely to be useful on continuous domain problems that have expensive solution evaluations.
منابع مشابه
Using Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem
Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this stu...
متن کاملFitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure
The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملبخشبندی معنادار مدل سهبعدی اجسام بر اساس استخراج برجستگیها و هسته جسم
3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...
متن کاملAn Improved Hybrid Cuckoo Search Algorithm for Vehicle Routing Problem with Time Windows
Transportation in economic systems such as services, production and distribution enjoys a special and important position and provides a significant portion of the country's gross domestic product. Improvements in transportation system mean improvements in the traveling routes and the elimination of unnecessary distances in any system. The Vehicle Routing Problem (VRP) is one of the practical co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007